Improved in situ spring constant calibration for colloidal probe atomic force microscopy.

نویسندگان

  • Sean P McBride
  • Bruce M Law
چکیده

In colloidal probe atomic force microscopy (AFM) surface forces cannot be measured without an accurate determination of the cantilever spring constant. The effective spring constant k depends upon the cantilever geometry and therefore should be measured in situ; additionally, k may be coupled to other measurement parameters. For example, colloidal probe AFM is frequently used to measure the slip length b at solid/liquid boundaries by comparing the measured hydrodynamic force with Vinogradova slip theory (V-theory). However, in this measurement k and b are coupled, hence, b cannot be accurately determined without knowing k to high precision. In this paper, a new in situ spring constant calibration method based upon the residuals, namely, the difference between experimental force-distance data and V-theory is presented and contrasted with two other popular spring constant determination methods. In this residuals calibration method, V-theory is fitted to the experimental force-distance data for a range of systematically varied spring constants where the only adjustable parameter in V-theory is the slip length b. The optimal spring constant k is that value where the residuals are symmetrically displaced about zero for all colloidal probe separations. This residual spring constant calibration method is demonstrated by studying three different liquids (n-decanol, n-hexadecane, and n-octane) and two different silane coated colloidal probe-silicon wafer systems (n-hexadecyltrichlorosilane and n-dodecyltrichlorosilane).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration of colloid probe cantilevers using the dynamic viscous response of a confined liquid

Articles you may be interested in Adhesive-free colloidal probes for nanoscale force measurements: Production and characterization Rev. Improved in situ spring constant calibration for colloidal probe atomic force microscopy Rev. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy Rev. A calibration method for lateral forces for use with colloidal probe f...

متن کامل

A novel technique for the in situ calibration and measurement of friction with the atomic force microscope

Presented here is a novel technique for the in situ calibration and measurement of friction with the atomic force microscope that can be applied simultaneously with the normal force measurement. The method exploits the fact that the cantilever sits at an angle of about 10° to the horizontal, which causes the tip or probe to slide horizontally over the substrate as a normal force run is performe...

متن کامل

Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement re...

متن کامل

Calibration of atomic-force microscope tips

Images and force measurements taken by an atomic-force microscope ( AFM) depend greatly on the properties of the spring and tip used to probe the sample’s surface. In this article, we describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AFM tip. Our procedure u...

متن کامل

Dynamic Surface Force Measurement. 2. Friction and the Atomic Force Microscope

The mechanism and geometry of force measurement with the atomic force microscope are analyzed in detail. The effective spring constant to be used in force measurement is given in terms of the cantilever spring constant. Particular attention is paid to possible dynamic effects. Theoretical calculations show that inertial effects may be neglected in most regimes, the exception being when relative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 81 11  شماره 

صفحات  -

تاریخ انتشار 2010